Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 59(8): 4953-4965, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35665897

RESUMO

Somatostatin cells are frequently described as a major population of GABAergic neurons in the cerebral cortex. In this study, we performed a comprehensive analysis of their molecular expression, morphological features, and laminar distribution. We provided a detailed description of somatostatin neurons in the human prefrontal cortex, including their proportion in the total neuron population, laminar distribution, neurotransmitter phenotype, as well as their molecular and morphological characteristics using immunofluorescence and RNAscope in situ hybridization. We found that somatostatin neurons comprise around 7% of neocortical neurons in the human Brodmann areas 9 and 14r, without significant difference between the two regions. Somatostatin cells were NeuN positive and synthesized vesicular GABA transporter and glutamate decarboxylase 1 and 2, confirming their neuronal nature and GABAergic phenotype. Somatostatin cells in the upper cortical layers were small, had a high expression of somatostatin mRNA, a relatively low expression of somatostatin peptide, and co-expressed calbindin. In the lower cortical layers, somatostatin cells were larger with complex somato-dendritic morphology, typically showed a lower expression of somatostatin mRNA and a high expression of somatostatin peptide, and co-expressed neuronal nitric oxide synthase (nNOS) and neuropeptide Y (NPY), but not calbindin. Somatostatin neurons in the white matter co-expressed MAP2. Based on their somato-dendritic morphology, cortical somatostatin neurons could be classified into at least five subtypes. The somatostatin neurons of the human prefrontal cortex show remarkable morphological and molecular complexity, which implies that they have equally complex and distinct functions in the human brain.


Assuntos
Neurônios GABAérgicos , Somatostatina , Calbindinas/metabolismo , Córtex Cerebral/metabolismo , Neurônios GABAérgicos/metabolismo , Humanos , Neuropeptídeo Y/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Somatostatina/metabolismo
2.
Science ; 374(6568): eabk2055, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735259

RESUMO

During development, neural circuit formation requires the stabilization of active γ-aminobutyric acid­mediated (GABAergic) synapses and the elimination of inactive ones. Here, we demonstrate that, although the activation of postsynaptic GABA type A receptors (GABAARs) and adenosine A2A receptors (A2ARs) stabilizes GABAergic synapses, only A2AR activation is sufficient. Both GABAAR- and A2AR-dependent signaling pathways act synergistically to produce adenosine 3',5'-monophosphate through the recruitment of the calcium­calmodulin­adenylyl cyclase pathway. Protein kinase A, thus activated, phosphorylates gephyrin on serine residue 303, which is required for GABAAR stabilization. Finally, the stabilization of pre- and postsynaptic GABAergic elements involves the interaction between gephyrin and the synaptogenic membrane protein Slitrk3. We propose that A2ARs act as detectors of active GABAergic synapses releasing GABA, adenosine triphosphate, and adenosine to regulate their fate toward stabilization or elimination.


Assuntos
Adenosina/metabolismo , Hipocampo/crescimento & desenvolvimento , Neurônios/fisiologia , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , Antagonistas do Receptor A2 de Adenosina , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cognição , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso , Fosforilação , Receptor A2A de Adenosina/genética , Receptores de GABA-A/metabolismo
3.
Exp Neurol ; 335: 113512, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098872

RESUMO

α-actinin-2 (α-actn-2) is an F-actin-crosslinking protein, localized in dendritic spines. In vitro studies suggested that it is involved in spinogenesis, morphogenesis, actin organization, cell migration and anchoring of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptors in dendritic spines. However, little is known regarding its function in vivo. We examined the levels of α-actn-2 expression within the dentate gyrus (DG) during the development of chronic limbic seizures (epileptogenesis) induced by pilocarpine in rats. In this model, plasticity of the DG glutamatergic granule cells including spine loss, spinogenesis, morphogenesis, neo-synaptogenesis, aberrant migration, and alterations of NMDA receptors have been well characterized. We showed that α-actn-2 immunolabeling was reduced in the inner molecular layer at 1-2 weeks post-status epilepticus (SE), when granule cell spinogenesis and morphogenesis occur. This low level persisted at the chronic stage when new functional synapses are established. This decreased of α-actn-2 protein is concomitant with the recovery of drebrin A (DA), another actin-binding protein, at the chronic stage. Indeed, we demonstrated in cultured cells that in contrast to DA, α-actn-2 did not protect F-actin destabilization and DA inhibited α-actn-2 binding to F-actin. Such alteration could affect the anchoring of NR1 in dendritic spines. Furthermore, we showed that the expression of α-actn-2 and NR1 are co-down-regulated in membrane fractions of pilocarpine animals at chronic stage. Last, we showed that α-actn-2 is expressed in migrating newly born granule cells observed within the hilus of pilocarpine-treated rats. Altogether, our results suggest that α-actn-2 is not critical for the structural integrity and stabilization of granule cell dendritic spines. Instead, its expression is regulated when spinogenesis and morphogenesis occur and within migrating granule cells. Our data also suggest that the balance between α-actn-2 and DA expression levels may modulate NR1 anchoring within dendritic spines.


Assuntos
Actinina/biossíntese , Movimento Celular/genética , Espinhas Dendríticas , Giro Denteado/fisiopatologia , Plasticidade Neuronal/genética , Convulsões/fisiopatologia , Actinina/genética , Actinas/metabolismo , Animais , Convulsivantes , Masculino , Neurogênese/genética , Neuropeptídeos/metabolismo , Pilocarpina , Ratos , Ratos Wistar , Receptores de GABA/metabolismo , Convulsões/induzido quimicamente , Sinapses
4.
Brain Struct Funct ; 225(9): 2643-2668, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32970253

RESUMO

Several studies suggest that neurons from the lateral region of the SuM (SuML) innervating the dorsal dentate gyrus (DG) display a dual GABAergic and glutamatergic transmission and are specifically activated during paradoxical (REM) sleep (PS). The objective of the present study is to characterize the anatomical, neurochemical and electrophysiological properties of the SuML-DG projection neurons and to determine how they control DG oscillations and neuronal activation during PS and other vigilance states. For this purpose, we combine structural connectivity techniques using neurotropic viral vectors (rabies virus, AAV), neurochemical anatomy (immunohistochemistry, in situ hybridization) and imaging (light, electron and confocal microscopy) with in vitro (patch clamp) and in vivo (LFP, EEG) optogenetic and electrophysiological recordings performed in transgenic VGLUT2-cre male mice. At the cellular level, we show that the SuML-DG neurons co-release GABA and glutamate on dentate granule cells and increase the activity of a subset of DG granule cells. At the network level, we show that activation of the SuML-DG pathway increases theta power and frequency during PS as well as gamma power during PS and waking in the DG. At the behavioral level, we show that the activation of this pathway does not change animal behavior during PS, induces awakening during slow wave sleep and increases motor activity during waking. These results suggest that the SuML-DG pathway is capable of supporting the increase of theta and gamma power in the DG observed during PS and plays an important modulatory role of DG network activity during this state.


Assuntos
Giro Denteado/fisiologia , Neurônios GABAérgicos/fisiologia , Raios gama , Ácido Glutâmico/fisiologia , Hipotálamo Posterior/fisiologia , Neurônios/fisiologia , Sono REM/fisiologia , Ritmo Teta , Animais , Giro Denteado/citologia , Neurônios GABAérgicos/citologia , Hipotálamo Posterior/citologia , Masculino , Potenciais da Membrana , Camundongos Transgênicos , Neurônios/citologia
5.
Front Mol Neurosci ; 13: 76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499678

RESUMO

The striatum, the main input structure of the basal ganglia, is critical for action selection and adaptive motor control. To understand the neuronal mechanisms underlying these functions, an analysis of microcircuits that compose the striatum is necessary. Among these, cholinergic interneurons (ChIs) provide intrinsic striatal innervation whose dysfunction is implicated in neuropsychiatric diseases, such as Parkinson's disease and Tourette syndrome. The ability to experimentally manipulate the activity of ChIs is critical to gain insights into their contribution to the normal function of the striatum and the emergence of behavioral abnormalities in pathological states. In this study, we generated and tested CAV-pChAT-GFP, a replication-defective canine adenovirus type 2 (CAV-2) vector carrying the green fluorescent protein (GFP) sequence under the control of the human choline acetyltransferase (ChAT) promoter. We first tested the potential specificity of CAV-pChAT-GFP to label striatal ChIs in a rat before performing experiments on two macaque monkeys. In the vector-injected rat and monkey striatum, we found that GFP expression preferentially colocalized with ChAT-immunoreactivity throughout the striatum, including those from local circuit interneurons. CAV-2 vectors containing transgene driven by the ChAT promoter provide a powerful tool for investigating ChI contributions to circuit function and behavior in nonhuman primates.

6.
Neuroscience ; 439: 181-194, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302264

RESUMO

Genetically encoded biosensors are widely used in cell biology for the non-invasive imaging of concentrations of ions or the activity of enzymes, to evaluate the distribution of small molecules, proteins and organelles, and to image protein interactions in living cells. These fluorescent molecules can be used either by transient expression in cultured cells or in entire organisms or through stable expression by producing transgenic animals characterized by genetically encoded and heritable biosensors. Using the mouse Thy1 mini-promoter, we generated a line of transgenic mice expressing a genetically encoded sensor for the simultaneous measurements of intracellular Cl- and pH. This construct, called ClopHensor, consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a red fluorescent protein (DsRedm). Stimulation of hippocampal Schaffer collaterals proved that the sensor is functionally active. To reveal the expression pattern of ClopHensor across the brain of Thy1::ClopHensor mice, we obtained transparent brain samples using the CLARITY method and imaged them with confocal and light-sheet microscopy. We then developed a semi-quantitative approach to identify brain structures with high intrinsic sensor fluorescence. This approach allowed us to assess cell morphology and track axonal projection, as well as to confirm E2GFP and DsRedm fluorescence colocalization. This analysis also provides a map of the brain areas suitable for non-invasive monitoring of intracellular Cl-/pH in normal and pathological conditions. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Assuntos
Axônios , Encéfalo , Animais , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência
7.
Front Cell Neurosci ; 13: 438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680863

RESUMO

Psychoactive drugs used during pregnancy can affect the development of the brain of offspring, directly triggering neurological disorders or increasing the risk for their occurrence. Caffeine is the most widely consumed psychoactive drug, including during pregnancy. In Wild type mice, early life exposure to caffeine renders offspring more susceptible to seizures. Here, we tested the long-term consequences of early life exposure to caffeine in THY-Tau22 transgenic mice, a model of Alzheimer's disease-like Tau pathology. Caffeine exposed mutant offspring developed cognitive earlier than water treated mutants. Electrophysiological recordings of hippocampal CA1 pyramidal cells in vitro revealed that early life exposure to caffeine changed the way the glutamatergic and GABAergic drives were modified by the Tau pathology. We conclude that early-life exposure to caffeine affects the Tau phenotype and we suggest that caffeine exposure during pregnancy may constitute a risk-factor for early onset of Alzheimer's disease-like pathology.

8.
Exp Neurol ; 295: 88-103, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28576568

RESUMO

The consumption of psychoactive drugs during pregnancy can have deleterious effects on newborns. It remains unclear whether early-life exposure to caffeine, the most widely consumed psychoactive substance, alters brain development. We hypothesized that maternal caffeine ingestion during pregnancy and the early postnatal period in mice affects the construction and activity of cortical networks in offspring. To test this hypothesis, we focused on primary visual cortex (V1) as a model neocortical region. In a study design mimicking the daily consumption of approximately three cups of coffee during pregnancy in humans, caffeine was added to the drinking water of female mice and their offspring were compared to control offspring. Caffeine altered the construction of GABAergic neuronal networks in V1, as reflected by a reduced number of somatostatin-containing GABA neurons at postnatal days 6-7, with the remaining ones showing poorly developed dendritic arbors. These findings were accompanied by increased synaptic activity in vitro and elevated network activity in vivo in V1. Similarly, in vivo hippocampal network activity was altered from the neonatal period until adulthood. Finally, caffeine-exposed offspring showed increased seizure susceptibility in a hyperthermia-induced seizure model. In summary, our results indicate detrimental effects of developmental caffeine exposure on mouse brain development.


Assuntos
Cafeína/toxicidade , Estimulantes do Sistema Nervoso Central/toxicidade , Córtex Cerebral/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Córtex Cerebral/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Técnicas In Vitro , Masculino , Camundongos , Neocórtex/efeitos dos fármacos , Neocórtex/crescimento & desenvolvimento , Rede Nervosa/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Convulsões Febris/induzido quimicamente , Convulsões Febris/fisiopatologia , Somatostatina/metabolismo , Córtex Visual/efeitos dos fármacos , Córtex Visual/crescimento & desenvolvimento , Ácido gama-Aminobutírico/fisiologia
9.
Front Behav Neurosci ; 11: 82, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28555096

RESUMO

HIGHLIGHTS Blockade of dopamine D1 receptors in ACC suppressed instrumental learning when overt responding was required.Covert learning through observation was not impaired.After treatment with a dopamine antagonist, instrumental learning recovered but not the rat's pretreatment level of effort tolerance.ACC dopamine is not necessary for acquisition of task-relevant cues during learning, but regulates energy expenditure and effort based decision. Dopamine activity in anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, including learning and effort based decision making. To dissociate learning from physical effort, we studied both observational (covert) learning, and trial-and-error (overt) learning. If ACC dopamine activity is required for task acquisition, its blockade should impair both overt and covert learning. If dopamine is not required for task acquisition, but solely for regulating the willingness to expend effort for reward, i.e., effort tolerance, blockade should impair overt learning but spare covert learning. Rats learned to push a lever for food rewards either with or without prior observation of an expert conspecific performing the same task. Before daily testing sessions, the rats received bilateral ACC microinfusions of SCH23390, a dopamine D1 receptor antagonist, or saline-control infusions. We found that dopamine blockade suppressed overt responding selectively, leaving covert task acquisition through observational learning intact. In subsequent testing sessions without dopamine blockade, rats recovered their overt-learning capacity but not their pre-treatment level of effort tolerance. These results suggest that ACC dopamine is not required for the acquisition of conditioned behaviors and that apparent learning impairments could instead reflect a reduced level of willingness to expend effort due to cortical dopamine blockade.

10.
Brain Struct Funct ; 220(4): 2449-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24889162

RESUMO

In mesial temporal lobe epilepsy (MTLE), spontaneous seizures likely originate from a multi-structural epileptogenic zone, including several regions of the limbic system connected to the hippocampal formation. In this study, we investigate the structural connectivity between the supramammillary nucleus (SuM) and the dentate gyrus (DG) in the model of MTLE induced by pilocarpine in the rat. This hypothalamic nucleus, which provides major extracortical projections to the hippocampal formation, plays a key role in the regulation of several hippocampus-dependent activities, including theta rhythms, memory function and emotional behavior, such as stress and anxiety, functions that are known to be altered in MTLE. Our findings demonstrate a marked reorganization of DG afferents originating from the SuM in pilocarpine-treated rats. This reorganization, which starts during the latent period, is massive when animals become epileptic and continue to evolve during epilepsy. It is characterized by an aberrant distribution and an increased number of axon terminals from neurons of both lateral and medial regions of the SuM, invading the entire inner molecular layer of the DG. This reorganization, which reflects an axon terminal sprouting from SuM neurons, could contribute to trigger spontaneous seizures within an altered hippocampal intrinsic circuitry.


Assuntos
Epilepsia do Lobo Temporal/patologia , Hipocampo/fisiopatologia , Hipotálamo Posterior/fisiopatologia , Terminações Pré-Sinápticas/patologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Masculino , Agonistas Muscarínicos , Vias Neurais/fisiopatologia , Fosfopiruvato Hidratase/metabolismo , Pilocarpina/toxicidade , Vírus da Raiva/metabolismo , Ratos , Ratos Wistar , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
11.
Sci Transl Med ; 5(197): 197ra104, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926202

RESUMO

Consumption of certain substances during pregnancy can interfere with brain development, leading to deleterious long-term neurological and cognitive impairments in offspring. To test whether modulators of adenosine receptors affect neural development, we exposed mouse dams to a subtype-selective adenosine type 2A receptor (A2AR) antagonist or to caffeine, a naturally occurring adenosine receptor antagonist, during pregnancy and lactation. We observed delayed migration and insertion of γ-aminobutyric acid (GABA) neurons into the hippocampal circuitry during the first postnatal week in offspring of dams treated with the A2AR antagonist or caffeine. This was associated with increased neuronal network excitability and increased susceptibility to seizures in response to a seizure-inducing agent. Adult offspring of mouse dams exposed to A2AR antagonists during pregnancy and lactation displayed loss of hippocampal GABA neurons and some cognitive deficits. These results demonstrate that exposure to A2AR antagonists including caffeine during pregnancy and lactation in rodents may have adverse effects on the neural development of their offspring.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Cafeína/farmacologia , Feto/efeitos dos fármacos , Feto/embriologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Movimento Celular/efeitos dos fármacos , Transtornos Cognitivos/patologia , Suscetibilidade a Doenças , Feminino , Feto/patologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Haplorrinos/embriologia , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Hipocampo/patologia , Camundongos , Rede Nervosa/efeitos dos fármacos , Gravidez , Ratos , Receptores A2 de Adenosina/metabolismo , Convulsões/embriologia , Convulsões/patologia , Telencéfalo/efeitos dos fármacos , Telencéfalo/embriologia , Telencéfalo/patologia
12.
J Biol Chem ; 287(21): 17656-17661, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22511771

RESUMO

The dorsal and ventral regions of the hippocampus perform different functions. Whether the integrative properties of hippocampal cells reflect this heterogeneity is unknown. We focused on dendrites where most synaptic input integration takes place. We report enhanced backpropagation and theta resonance and decreased summation of synaptic inputs in ventral versus dorsal CA1 pyramidal cell distal dendrites. Transcriptional Kv4.2 down-regulation and post-transcriptional hyperpolarization-activated cyclic AMP-gated channel (HCN1/2) up-regulation may underlie these differences, respectively. Our results reveal differential dendritic integrative properties along the dorso-ventral axis, reflecting diverse computational needs.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/biossíntese , Dendritos/metabolismo , Regulação para Baixo/fisiologia , Canais Iônicos/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Canais de Potássio/biossíntese , Células Piramidais/metabolismo , Canais de Potássio Shal/biossíntese , Regulação para Cima/fisiologia , Animais , Dendritos/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Especificidade de Órgãos , Células Piramidais/citologia , Ratos , Transcrição Gênica/fisiologia
13.
Neuron ; 74(1): 57-64, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22500630

RESUMO

Gamma-frequency oscillations (GFOs, >40 Hz) are a general network signature at seizure onset at all stages of development, with possible deleterious consequences in the immature brain. At early developmental stages, the simultaneous occurrence of GFOs in different brain regions suggests the existence of a long-ranging synchronizing mechanism at seizure onset. Here, we show that hippocamposeptal (HS) neurons, which are GABA long-range projection neurons, are mandatory to drive the firing of hippocampal interneurons in a high-frequency regime at the onset of epileptiform discharges in the intact, immature septohippocampal formation. The synchronized firing of interneurons in turn produces GFOs, which are abolished after the elimination of a small number of HS neurons. Because they provide the necessary fast conduit for pacing large neuronal populations and display intra- and extrahippocampal long-range projections, HS neurons appear to belong to the class of hub cells that play a crucial role in the synchronization of developing networks.


Assuntos
Sincronização Cortical/fisiologia , Epilepsia/fisiopatologia , Neurônios GABAérgicos/fisiologia , Hipocampo/crescimento & desenvolvimento , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Hipocampo/citologia , Hipocampo/fisiologia , Técnicas In Vitro , Interneurônios/fisiologia , Camundongos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Ratos , Septo do Cérebro/citologia , Septo do Cérebro/crescimento & desenvolvimento , Septo do Cérebro/fisiologia
14.
J Neurosci ; 32(11): 3736-47, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423094

RESUMO

The dorsoventral and developmental gradients of entorhinal layer II cell grid properties correlate with their resonance properties and with their hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel current characteristics. We investigated whether such correlation existed in rat hippocampal CA1 pyramidal cells, where place fields also show spatial and temporal gradients. Resonance was absent during the first postnatal week, and emerged during the second week. Resonance was stronger in dorsal than ventral cells, in accord with HCN current properties. Resonance responded to cAMP in ventral but not in dorsal cells. The dorsoventral distribution of HCN1 and HCN2 subunits and of the auxiliary protein tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) could account for these differences between dorsal and ventral cells. The analogous distribution of the intrinsic properties of entorhinal stellate and hippocampal cells suggests the existence of general rules of organization among structures that process complementary features of the environment.


Assuntos
Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Células Piramidais/citologia , Células Piramidais/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
15.
Hippocampus ; 22(3): 477-93, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21240918

RESUMO

We used a pathophysiological model of temporal lobe epilepsy induced by pilocarpine in adult rats in order to assess the in vivo role of drebrin A (DA), one of the major regulators of F-actin. This model displays a dynamic reorganization of the glutamatergic network including neo-spinogenesis, morphogenesis, and neo-synaptogenesis associated with an aberrant sprouting of granule cell axons in the dentate gyrus (DG). This reactive plasticity contributes in dentate granule-cell hyperexcitability that could lead to the emergence of recurrent spontaneous seizures. We investigated the hippocampal DA expression changes in pilocarpine animals using immunohistochemical, Western blot, and in situ hybridization analyses. We showed that DA immunoreactivity was decreased in the inner molecular layer (IML) and in the hilus (H) of the DG, at latent stage, when spinogenesis and morphogenesis occur. Western blot analysis confirmed these overall hippocampal decreases of DA protein expression. At chronic stage, when newly formed glutamatergic synapses are being established, the levels of immunolabeling for DA in the H and the IML were similar to control rats. This recovery is likely due to the increase of DA mRNA in perikarya of hilar and granule cells. Interestingly, our data showed that the changes pattern of labeling for Bassoon, a specific marker for presynaptic active zone, in the IML of pilocarpine-treated animals paralleled those found for DA at all time points examined. Furthermore, our double and triple immunofluorescence studies showed that the recovery in DA levels in the IML occurred within the dendritic spines involved in glutamatergic active synapses of presumed granule cells. Altogether, our results indicate that in vivo DA is not critical for spinogenesis and morphogenesis but instead is consistent with an involvement in synaptic structural integrity, stabilization, and function. Thus, DA appears as a novel modulator of reactive synaptic plasticity associated with epilepsy.


Assuntos
Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Convulsões/metabolismo , Sinapses/metabolismo , Animais , Hipocampo/fisiopatologia , Masculino , Neuropeptídeos/genética , Pilocarpina/intoxicação , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/fisiopatologia , Sinapses/genética
16.
Ann Neurol ; 70(3): 454-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21905079

RESUMO

OBJECTIVE: Enduring, abnormal expression and function of the ion channel hyperpolarization-activated cyclic adenosine monophosphate gated channel type 1 (HCN1) occurs in temporal lobe epilepsy (TLE). We examined the underlying mechanisms, and investigated whether interfering with these mechanisms could modify disease course. METHODS: Experimental TLE was provoked by kainic acid-induced status epilepticus (SE). HCN1 channel repression was examined at mRNA, protein, and functional levels. Chromatin immunoprecipitation was employed to identify the transcriptional mechanism of repressed HCN1 expression, and the basis for their endurance. Physical interaction of the repressor, NRSF, was abolished using decoy oligodeoxynucleotides (ODNs). Video/electroencephalographic recordings were performed to assess the onset and initial pattern of spontaneous seizures. RESULTS: Levels of NRSF and its physical binding to the Hcn1 gene were augmented after SE, resulting in repression of HCN1 expression and HCN1-mediated currents (I(h) ), and reduced I(h) -dependent resonance in hippocampal CA1 pyramidal cell dendrites. Chromatin changes typical of enduring, epigenetic gene repression were apparent at the Hcn1 gene within a week after SE. Administration of decoy ODNs comprising the NRSF DNA-binding sequence (neuron restrictive silencer element [NRSE]), in vitro and in vivo, reduced NRSF binding to Hcn1, prevented its repression, and restored I(h) function. In vivo, decoy NRSE ODN treatment restored theta rhythm and altered the initial pattern of spontaneous seizures. INTERPRETATION: Acquired HCN1 channelopathy derives from NRSF-mediated transcriptional repression that endures via chromatin modification and may provide insight into the mechanisms of a number of channelopathies that coexist with, and may contribute to, the conversion of a normal brain into an epileptic one.


Assuntos
Canalopatias/fisiopatologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Nucleotídeos Cíclicos/metabolismo , Canais de Potássio/fisiologia , Proteínas Repressoras/fisiologia , Animais , Região CA1 Hipocampal/patologia , Canalopatias/genética , Canalopatias/metabolismo , Cromatina/patologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Dendritos/patologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Agonistas de Aminoácidos Excitatórios , Expressão Gênica/genética , Expressão Gênica/fisiologia , Hipocampo/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/fisiologia , Ácido Caínico , Masculino , Canais de Potássio/genética , Ratos , Ratos Wistar , Proteínas Repressoras/antagonistas & inibidores , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia
17.
Eur J Neurosci ; 32(5): 771-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20722723

RESUMO

The supramammillary nucleus (SuM) provides substantial projections to the hippocampal formation. This hypothalamic structure is involved in the regulation of hippocampal theta rhythm and therefore the control of hippocampal-dependent cognitive functions as well as emotional behavior. A major goal of this study was to characterize the neurotransmitter identity of the SuM-hippocampal pathways. Our findings demonstrate two distinct neurochemical pathways in rat. The first pathway originates from neurons in the lateral region of the SuM and innervates the supragranular layer of the dorsal dentate gyrus and, to a much lesser extent, the ventral dentate gyrus. This pathway displays a unique dual phenotype for GABAergic and glutamatergic neurotransmission. Axon terminals contain markers of GABAergic neurotransmission, including the synthesizing enzyme of GABA, glutamate decarboxylase 65, and the vesicular GABA transporter and also a marker of glutamatergic neurotransmission, the vesicular glutamate transporter 2. The second pathway originates from neurons in the most posterior and medial part of the SuM and innervates exclusively the inner molecular layer of the ventral dentate gyrus and the CA2/CA3a pyramidal cell layer of the hippocampus. The axon terminals from the medial part of the SuM contain the vesicular glutamate transporter 2 only. These data demonstrate for the first time the heterogeneity of the SuM-hippocampal pathways, not only from an anatomical but also a neurochemical point of view. These pathways, implicated in different neuronal networks, could modulate different hippocampal activities. They are likely to be involved differently in the regulation of hippocampal theta rhythm and associated cognitive functions as well as emotional behavior.


Assuntos
Hipocampo/metabolismo , Corpos Mamilares/metabolismo , Vias Neurais/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Ácido Glutâmico/metabolismo , Hipocampo/anatomia & histologia , Hipocampo/ultraestrutura , Masculino , Corpos Mamilares/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico/métodos , Fenótipo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley
18.
Front Neuroanat ; 3: 26, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20011218

RESUMO

Gamma-aminobutyric-acidergic (GABAergic) cells form a very heterogeneous population of neurons that play a crucial role in the coordination and integration of cortical functions. Their number and diversity increase through mammalian brain evolution. Does evolution use the same or different developmental rules to provide the increased population of cortical GABAergic neurons? In rodents, these neurons are not generated in the pallial proliferative zones as glutamatergic principal neurons. They are produced almost exclusively by the subpallial proliferative zones, the ganglionic eminence (GE) and migrate tangentially to reach their target cortical layers. The GE is organized in molecularly different subdomains that produce different subpopulations of cortical GABAergic neurons. In humans and non-human primates, in addition to the GE, cortical GABAergic neurons are also abundantly generated by the proliferative zones of the dorsal telencephalon. Neurogenesis in ventral and dorsal telencephalon occurs with distinct temporal profiles. These dorsal and ventral lineages give rise to different populations of GABAergic neurons. Early-generated GABAergic neurons originate from the GE and mostly migrate to the marginal zone and the subplate. Later-generated GABAergic neurons, originating from both proliferative sites, populate the cortical plate. Interestingly, the pool of GABAergic progenitors in dorsal telencephalon produces mainly calretinin neurons, a population known to be significantly increased and to display specific features in primates. We conclude that the development of cortical GABAergic neurons have exclusive features in primates that need to be considered in order to understand pathological mechanisms leading to some neurological and psychiatric diseases.

19.
Commun Integr Biol ; 2(3): 268-70, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19641748

RESUMO

Drebrin A is one of the most abundant neuron-specific binding proteins of F-actin and its expression is increased in parallel with synapse formation. Drebrin A is particularly concentrated in dendritic spines, postsynaptic sides of excitatory glutamatergic synapses. More recently, Ferhat and colleagues reported the functional role of drebrin A in regulating synaptic transmission. Indeed, our study showed that overexpression of drebrin A induced an increase of glutamatergic but not GABAergic synapses and resulted in the alteration of the normal excitatory-inhibitory ratio in favor of excitation in mature hippocampal neurons. Downregulation of drebrin A expression by antisense oligonucleotides resulted in the decrease of both miniature- glutamatergic and GABAergic synaptic activities without affecting the excitatory-inhibitory ratio. Studies performed in heterologous cells revealed that drebrin A reorganized the actin filaments and stabilized them and that these effects are depend upon its actin-binding domain. These results suggest that drebrin A regulates dendritic spine morphology, size and density, presumably via regulation of actin cytoskeleton remodeling and dynamics. These data demonstrate for the first time that an actin-binding protein such as drebrin A regulates both glutamatergic and GABAergic synaptic transmissions, probably through an increase of active synaptic site density for glutamatergic transmission and through homeostatic mechanisms for the GABAergic one.It is appealing to suggest that abnormalities in the expression of drebrin A may result in aberrant synapse development and/or loss of synapses leading to synaptic dysfunction, which underlies cognitive impairment accompanying neurological disorders such as Alzheimer's disease, Down syndrome as well as normal aging.

20.
J Neurosci ; 29(17): 5402-10, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19403808

RESUMO

Patients with temporal lobe epilepsy (TLE), the most common form of epilepsy in adults, often display cognitive deficits. The time course and underlying mechanisms of cognitive decline remain unknown during epileptogenesis (the process leading to epilepsy). Using the rat pilocarpine model of TLE, we performed a longitudinal study to assess spatial and nonspatial cognitive performance during epileptogenesis. In parallel, we monitored interictal-like activity (ILA) in the hippocampal CA1 region, as well as theta oscillations, a brain rhythm central to numerous cognitive processes. Here, we report that spatial memory was altered soon after pilocarpine-induced status epilepticus, i.e., already during the seizure-free, latent period. Spatial deficits correlated with a decrease in the power of theta oscillations but not with the frequency of ILA. Spatial deficits persisted when animals had spontaneous seizures (chronic stage) without further modification. In contrast, nonspatial memory performances remained unaffected throughout. We conclude that the reorganization of hippocampal circuitry that immediately follows the initial insult can affect theta oscillation mechanisms, in turn, resulting in deficits in hippocampus-dependent memory tasks. These deficits may be dissociated from the process that leads to epilepsy itself but could instead constitute, as ILA, early markers in at-risk patients and/or provide beneficial therapeutic targets.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Transtornos da Memória/fisiopatologia , Memória/fisiologia , Comportamento Espacial/fisiologia , Ritmo Teta , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Masculino , Transtornos da Memória/induzido quimicamente , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Comportamento Espacial/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...